氧化爆裂提高页岩气采收率的前景
游利军1, 康毅力1, 陈强1, 方朝合2, 杨鹏飞1
1.“油气藏地质及开发工程”国家重点实验室·西南石油大学
2.国家能源页岩气研发(实验)中心

作者简介:游利军,1976年生,教授,博士生导师,博士;主要从事储层保护、非常规油气、岩石物理方面的教学和科研工作。地址:(610500)四川省成都市新都区新都大道8号。ORCID: 0000-0003-2736-1095。E-mail: youlj0379@126.com

摘要

水平井分段压裂技术利用水力作用打碎页岩,形成缝网,以提高页岩气井的产量,但压裂液滞留造成的水相圈闭会影响改造效果。为此,考虑页岩中有机质、黄铁矿等组分易氧化的特征,基于“矛盾转化,变害为利”的思路,探讨了将压裂液滞留这一不利因素转化为改变气体赋存状态、激发页岩破裂的有利条件的方法,并分析了该方法在解决页岩气层水力压裂液滞留量大、损害潜力大、气井产量递减快、页岩气采收率低等问题中的应用前景。页岩有机质、黄铁矿氧化后会产生大量溶蚀孔缝,提升基块孔喉向裂缝系统的供气能力,同时氧化过程释放热量、增加孔隙压力可使岩石爆裂,诱发页岩微裂缝扩展、延伸,增加泄流面积、缩短基块内气体传输路径,从而达到解除损害、提高采收率的目的。该方法在现有水力压裂液中加入氧化流体,不仅可以利用现有水力压裂技术的水力作用“打碎”页岩,而且还可以利用氧化化学作用“爆裂页岩”。结论认为,该方法可以对页岩气藏传统的水力压裂方法形成有益的补充,在实现降本增效、页岩气井高产稳产与提高页岩气采收率方面具有广阔的应用前景。

关键词: 页岩气; 氧化; 采收率; 岩爆; 有机质; 黄铁矿; 传输能力
Prospect of shale gas recovery enhancement by oxidation-induced rock burst
You Lijun1, Kang Yili1, Chen Qiang1, Fang Chaohe2, Yang Pengfei1
1. State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation//Southwest Petroleum University, Chengdu, Sichuan 610500, China
2. National Energy Shale Gas R&D (Experiment) Center, Langfang, Hebei 065007, China
Abstract

By multi-staged fracturing technology for horizontal wells, shale rocks can be broken to form fracture networks via hydraulic force and increase the production rate of shale gas wells. Nonetheless, the fracturing stimulation effect may be offset by the water trap caused by water retention. In this paper, a technique in transferring the negative factor of fracturing fluid retention into a positive factor of changing the gas existence state and facilitating shale cracking was discussed using the easy oxidation characteristics of organic matter, pyrite and other minerals in shale rocks. Furthermore, the prospect of this technique in tackling the challenges of large retention volume of hydraulic fracturing fluid in shale gas reservoirs, high reservoir damage risks, sharp production decline rate of gas wells and low gas recovery, was analyzed. The organic matter and pyrite in shale rocks can produce a large number of dissolved pores and seams to improve the gas deliverability of the matrix pore throats to the fracture systems. Meanwhile, in the oxidation process, released heat and increased pore pressure will make shale rock burst, inducing expansion and extension of shale micro-fractures, increasing the drainage area and shortening the gas flowing path in matrix, and ultimately, removing reservoir damage and improving gas recovery. To sum up, the technique discussed in the paper can be used to "break" shale rocks via hydraulic force and to "burst" shale rocks via chemical oxidation by adding oxidizing fluid to the hydraulic fracturing fluid. It can thus be concluded that this method can be a favorable supplementation for the conventional hydraulic fracturing of shale gas reservoirs. It has a broad application future in terms of reducing costs and increasing profits, maintaining plateau shale gas production and improving shale gas recovery.

Keyword: Shale gas; Oxidization; Gas recovery; Rock burst; Organic matter; Pyrite; Conductivity
0 引言

要提高页岩气藏采收率, 关键在于提升甲烷气体解吸— 扩散传输能力。水力压裂有利于提升页岩气藏渗流能力, 但仍无法解决纳米孔内甲烷解吸— 扩散传输能力低的难题, 致使页岩基块供气能力远低于裂缝内气体传输能力, 因而开采初期气井产量呈指数式递减[1, 2, 3]。孔隙越小, 甲烷气体解吸— 扩散传输阻力越大, 气藏采收率越低, 例如美国页岩气藏采收率多在5%~20%, 其中Barnett页岩气藏采收率仅10%。

有机质内部发育大量纳米尺度孔隙, 而黄铁矿空间分布与有机质紧密相连, 有机质、黄铁矿与甲烷气体传输路径密切相关。有机质、黄铁矿属于还原环境沉积产物[4], 易氧化溶蚀。因而, 可以在水力压裂液中添加氧化剂, 利用压裂液易滞留、难返排特点[5, 6, 7, 8, 9, 10, 11, 12], 氧化溶蚀有机质、黄铁矿, 形成溶蚀孔缝, 提升页岩孔缝系统传输能力。

笔者在分析页岩气藏工程地质特征对气体传输能力的影响基础上, 论证了页岩氧化爆裂的技术思路的可行性, 并讨论了氧化作用在页岩气井增产改造、提高采收率等方面的应用前景。

1 页岩气藏的工程地质特征与气体传输能力
1.1 多尺度孔缝空间决定着页岩气传输能力

页岩气主要赋存于有机质孔隙与黏土矿物粒间孔隙中, 这些孔隙主要为纳米级[13, 14]。按尺寸将孔隙划分为微孔(d< 2 nm)、介孔(2 nm< d< 50 nm)、宏孔(d> 50 nm)[15, 16, 17], 页岩孔隙平均直径小于100 nm, 主要为介孔与宏孔[16, 17, 18]。裂缝是页岩气传输能力控制因素之一[19, 20, 21, 22], 而页岩裂缝主要介于宏孔尺度[19]。页岩微孔与介孔内甲烷气体以解吸— 努森扩散、滑脱流动为主, 而宏孔以黏性流和努森扩散/滑脱为主[19, 23]。依据页岩多尺度孔缝系统特征, Alharthy等提出了页岩“ 三重” 孔隙网络气体传输模型与“ 串联” 和“ 并联” 两种传输机制[19]。“ 串联” 传输中, 页岩气传输方向依次为微孔、介孔、宏孔, 而“ 并联” 时微孔与介孔中气体同时向宏孔传输。

1.2 甲烷赋存状态影响页岩气传输能力

页岩气藏中天然气由3部分组成:裂缝中的游离气、有机质孔隙与黏土矿物粒间孔等基质孔隙中的游离气和吸附气。北美页岩吸附气占比介于20%~85%。吸附态甲烷主要赋存于微孔、介孔内, 该尺度下甲烷气体传输机理为解吸— 扩散、滑脱流动, 与更大尺度空间内的游离甲烷相比, 吸附甲烷产出速率小、产出程度低[24, 25, 26, 27]。同时, 甲烷气体渗透率明显小于氮气、氦气, 主要原因为甲烷在孔隙壁面的吸附使有效传输路径减小, 甲烷传输阻力增加[28]。甲烷吸附影响页岩有效孔径[29], 会降低页岩纳米孔视渗透率[30, 31]

1.3 富含有机质、黄铁矿是氧化爆裂提升页岩气传输能力的前提条件

有机质是优质页岩重要组成部分。页岩有机孔发育于有机质内, 对于高过成熟度有机质, 其内部有机孔十分发育且连通性好[32, 33, 34, 35]。渝东南下寒武统牛蹄塘组页岩有机碳含量分布在2%~10%之间, 平均为7.0%[36], 鄂尔多斯盆地陆相页岩上三叠统延长组长71层系有机碳含量一般为4%~12%[37], 四川盆地上奥陶统五峰组— 下志留统龙马溪组“ 甜点” 区块有机质含量大于3.0%, 若以有机质密度1.2 g/cm3计算, 则页岩有机质体积占比介于4%~25%。准噶尔盆地页岩有机碳含量最高达79.44%[38]。页岩有机质赋存状态多样[39, 40, 41], 根据有机质与矿物接触关系, 有机质赋存状态划分为4种类型[42]:条带状、填隙状、薄膜状、碎屑状。Loucks等将页岩有机质划分为密集连续、稀疏连续和分散有机质三种类型[43], Nie等认为页岩有机质主要沿着微层理面或沉积间断面分布, 这种有机质赋存形式容易产生相互连通的有机孔隙网络, 其渗透性一般较好。Kuila等[53]研究认为, 页岩有机质以分散的颗粒状和连续性的层状形式存在, 颗粒状有机质与黏土矿物粒间孔隙连通性较好。

黄铁矿(FeS2)作为黑色页岩最主要的硫化矿物, 是富有机质沉积的特征矿物[44, 45, 46, 47, 48]。页岩气层普遍存在黄铁矿, 含量主要介于1%~5%, 形态以草莓状或霉球状、局部富集块状为主, 自形晶体黄铁矿较少, 粒径介于数微米至数十微米。

有机质与黄铁矿化学性质活泼, 氧化形成溶蚀纳微尺度孔缝潜力大。Anderson等发现, 次氯酸钠溶液、溴水等能高效去除黏土岩中的有机质[49]。在高锰酸钾(KMnO4)溶液氧化作用下, 土壤有机质易被氧化分解[50], 如KMnO4溶液浓度为0.3 mol/L时, 有机质氧化分解率介于60%~98%[51]。张梦妍等指出, 土壤有机质与氧化性溶液接触时, 羰基可被氧化形成羧酸, 而芳香性碳可能开环形成饱和的脂肪族碳与水分子有机酸[52]。Kuila等利用NaOCl溶液研究了页岩有机质氧化去除效果, 发现未成熟有机质不易被氧化溶蚀, 而高过成熟有机质极易被氧化分解, 氧化后页岩纳米孔隙直径显著变大[53]。黄铁矿是难溶稳定硫化物, 用强氧化剂可高效溶液去除[54]。页岩中黄铁矿(FeS2)所含S原子处于– 1价, 具有还原性, 与氧化性溶液接触后, 黄铁矿可被氧化去除, 而对其他无机矿物组分无影响[53]; 巫锡勇等研究认为, 黑色页岩水— 岩化学作用主要体现在黄铁矿的氧化分解上[55]

1.4 压裂液大量滞留可转变为氧化提升页岩气传输能力的有利条件

页岩存在强烈自吸作用, 气藏水相滞留效应强, 压裂液返排率低。富气页岩含水饱和度一般较低[9, 56, 57], 超低含水饱和度增加了页岩储集空间, 提高了气相渗透率, 但在工程作业过程中加速了水相渗吸速率, 强化了水相滞留效应[10, 11]。页岩气井广泛采用水平井多段压裂方式投产, 单井用水量上万立方米。然而, 返排水量仅占入井总量的10%~40%[12, 58], 大部分水滞留于页岩气层。亲水页岩纳米孔缝具有高毛细管压力[59], 当与页岩接触时, 压裂液将通过自吸方式侵入[5]。页岩气井压裂后关井会降低压裂液返排率, 且关井时间越长, 返排率越低[60], 返排率低于10%较为普遍[61]。Civan指出, 毛细管压力与相对渗透率极大影响压裂液返排过程[62]; Makhanov等认为, 自吸作用可能是压裂液侵入页岩储层与低返排率的主要原因[6, 63, 64]。高树生等进行了页岩粉末膨胀和岩心吸水实验并运用缝网渗流能力等效原理, 概算了页岩气井体积压裂后的吸水强度[65]。姚军团队利用页岩三维数字岩心进行高密度比的格子Boltzmann从孔隙尺度来模拟页岩压裂液返排率[66]。页岩气井焖井期间的压裂液吸收主要与压裂液性质、人工缝网表面积和焖井时间有关[67]。Ruppert等通过小角散射实验指出, 水可以侵入页岩10 nm~10 μ m之间的绝大多数孔隙[68]; Kuila等实验发现, 页岩饱水法孔隙度与He气测孔隙度值十分接近, 认为水可以侵入页岩几乎所有纳米级孔隙[69], 进入页岩的不配伍流体既可诱发损害[70], 也可诱发裂缝扩展[71, 72]

2 页岩氧化爆裂提升甲烷传输能力的技术思路

页岩气开发存在以下技术难题:①如何提高气藏改造有效周期?页岩气井压裂改造投产后由于气体需要解吸— 扩散— 渗流过程产出, 然而现有改造切割页岩基块能力有限, 导致供气能力不足而压力和产量递减快。②如何提高页岩气采收率?如何提高页岩吸附气采收率?目前采出页岩气主要是游离气。页岩气中吸附气量巨大, 20%~80%的页岩气处于吸附状态, 因此, 提高基块渗透能力或增加压裂改造缝网密度, 并提高吸附气解吸速率, 即可提高页岩气采收率。

页岩气藏基块为纳达西渗透率, 气体以游离气、吸附气赋存在基块孔喉中, 虽然页岩中层理或天然裂缝能提高岩石渗透率, 但是仍然有限, 这种先天不足, 必须经过体积改造等提高裂缝体积。

中国页岩气开发既有提高单井产量、保持长期稳产的指向, 同时又有降低成本、保护环境的目标。这就既要提高改造规模和压裂液返排率, 又要减少压裂用水和处理剂用量。页岩气安全环保开采是科学发展的硬要求, 也是产业化发展的必然要求[73]。这就要开辟出既保护生态环境, 又能经济有效地创造出页岩气开发的“ 新路” 。

页岩气有效开发与提高采收率的关键是解决解吸、扩散速率的问题, 然而目前改造新理念— — 体积改造(SRV), 也主要在考虑储层地应力场、岩石力学参数及天然裂缝等因素基础上[74, 75, 76], 通过分段多簇射孔, 高排量、大液量、低黏液体, 以及转向材料与技术等的应用, 实现沟通天然裂缝、层理, 并将储集体“ 打碎” , 形成裂缝网络[76], 而忽略了压裂液低返排、长期滞留储层可能产生的积极作用[77]

页岩气藏增产改造的“ 新路” 是充分利用压裂作业能量与压裂液的作用, 在形成主体裂缝网络基础上, 利用滞留压裂液与页岩的力学— 化学作用进一步切割或“ 泡碎” 改造体积内页岩基块, 即改造效率或改造密度, 进一步提高气体传输速率(图1)。

图1 氧化溶蚀有机质/黄铁矿协同缝网改造提升气藏传输能力示意图

而如何发挥滞留压裂液作用“ 泡碎” 岩石?考虑到页岩气藏岩石有机质、黄铁矿是还原环境的产物, 易被氧化, 结合压裂液易滞留、难返排特点, 充分利用有机质、黄铁矿易氧化溶蚀特性, 改造页岩纳米孔隙系统, 增加甲烷气体传输路径连通性, 提高裂缝密度或体积, 缩短解吸— 扩散传输路径, 跨越气体扩散阶段, 提升页岩气传输能力与采收率(图2), 实现一次压裂、长期改造储层的目的, 且氧化能消除压裂液中聚合物堵塞、消除返排液中有机质。

图2 氧化溶蚀页岩有机质提升气体传输能力示意图(据Loucks, 2009修改)
注:右图中粉色为氧化溶蚀后气体传输路径。氧化性流体氧化溶蚀裂缝面有机质, 提高裂缝面基块渗透率与微裂缝

因此, 该思路的基本设想是:氧化作用下, 页岩中有机质、黄铁矿被氧化消耗, 产生溶蚀孔缝, 沟通孔隙; 氧化产生大量热量、气体、有机酸等, 热量与气体作用可使致密页岩孔隙压力快速增加, 可能使页岩产生爆裂, 增加改造深度; 有机酸可能溶蚀天然裂缝中碳酸盐矿物, 降低岩石强度, 产生酸蚀裂缝; 有机质被消耗, 大幅度降低页岩吸附甲烷能力, 同时氧化产生的热量, 均可促使页岩气解吸。在毛细管渗吸、氧化溶蚀、热致裂、酸蚀等作用下, 使连续有机质、分散有机质都能被氧化, 产生爆裂, 提升页岩气传输能力(图2)。

3 富有机质页岩氧化爆裂应用前景分析
3.1 与现有水力压裂产生协同效应, 增加改造的裂缝密度与提高采收率

在压裂液中加入氧化剂, 利用滞留在压裂裂缝内的压裂液消耗有机质, 提高基块渗透率, 在裂缝壁面产生更多的微裂缝, 增加缝网密度, 提高了基块与裂缝之间的窜流系数。

氧化有机质与黄铁矿, 促使页岩创生新裂缝。黄铁矿和有机质的氧化反应放出的热量能够大幅提高储层局部温度, 页岩储层矿物非均质性强, 不同矿物膨胀能力差异显著。因此会产生较大的热应力, 而页岩渗透率低, 热应力在局部集中达到一定程度后, 使改造体积内的基块产生裂缝, 从而增加缝网密度。页岩中层状有机质氧化溶蚀后, 形成溶蚀孔缝[78], 进一步沟通基块孔喉和裂缝, 增加裂缝密度(图3)。

图3 富有机质页岩氧化增加缝网密度与提高采收率机理图

氧化有机质, 降低页岩吸附甲烷能力, 激发页岩吸附气解吸。有机质氧化后产生二氧化碳与热量, 页岩对二氧化碳吸附能力强于甲烷, 产生二氧化碳可以置换甲烷, 氧化产生高温也降低页岩吸附甲烷能力。因此, 该技术思路有助于提高页岩吸附气采收率, 增加裂缝密度也可以增加吸附气和游离气产出, 最终到达提高页岩气井产量与页岩气藏采收率的目的。

3.2 延长改造有效期, 实现页岩气井高产稳产

现有水力压裂技术利用水力作用, 打碎岩石产生裂缝, 改造气藏, 但是由于页岩致密, 基块纳米孔隙中气体仍然难以进入裂缝和井筒, 气井改造有效期短, 产量递减快。如果氧化改性现有压裂液, 通过页岩层理、微裂缝、纳米孔自发渗吸压裂液作用, 水力压裂后氧化性压裂液仍然可以在较大范围内与页岩继续发生氧化溶蚀作用, 氧化溶蚀产生的溶蚀孔缝, 将诱发氧化性液体逐渐进入基块更深处, 改造范围随着时间延长而增大, 实现一次压裂长期改造储层的目的, 使页岩气井较长时间保持高产稳产。

3.3 重复改造页岩气井, 经济有效提高气藏采收率

页岩油气井钻井、完井成本占上游成本50%, 通过钻新井稳产或提高采收率成本较高, 尤其是目前低油价情况下经济效益差, 而重复改造页岩气井是一个值得推荐的方法。如果在低产或无产页岩气井中注入氧化性液体, 不仅消除原有改造缝网中聚合物或页岩粉堵塞, 而且通过焖井等措施, 对现有裂缝网络进行改造, 增加缝网密度, 恢复或提高页岩气井产量, 实现经济有效提高气藏采收率的目标。

3.4 缓解滞留压裂液损害储层与返排液污染环境的矛盾

滞留的常规压裂液在微裂缝或裂缝附近基块孔喉中形成高含水饱和度带, 影响气体传输, 损害气藏供气能力。依照笔者提出的氧化改造技术思路, 页岩气井压裂改造后合理延长关井时间, 充分利用“ 焖井” 期间的水(氧化改性压裂液)— 岩(页岩)化学作用, 消耗有机质与黄铁矿, 弱化页岩强度, 诱发微裂缝萌生、扩展、延伸, 提高压裂缝密度; 同时, 页岩氧化反应产生的气体与吸附于原有机质上的气体解吸可以提高孔隙压力, 氧化溶蚀孔缝增加了压力传递速率, 增大了压裂液返排动力, 从而弱化滞留压裂液相圈闭损害。

页岩气井压裂施工后, 由于压裂液与富有机质页岩长期接触, 返排液中高含有机质, 如部分Marcellus页岩气井压裂液返排液中有机碳含量高达509 mg/L[79], 这些返排液可对环境造成严重污染[61], 处理措施也较复杂。通过在压裂液中加入氧化剂, 不仅氧化页岩地层中有机质, 而且氧化返排液中有机质, 从而缓解返排压裂液的环境污染或降低返排液的处理费用。

4 结论

1)提高页岩气藏采收率, 关键在于提升甲烷气体解吸— 扩散传输能力; 传统水力压裂有利于提升页岩气藏渗流能力, 但仍无法解决纳米孔内甲烷解吸— 扩散传输能力低的难题。

2)富含有机质、黄铁矿是氧化溶蚀提升页岩气传输能力的可利用的地质条件, 页岩气井压裂液低大量滞留是氧化溶蚀提升页岩气传输能力可利用的工程条件。

3)页岩中有机质与黄铁矿氧化, 消耗有机质、释放热量、产生有机酸与二氧化碳, 可以增加水力压裂缝网密度, 提高页岩气采收率。

The authors have declared that no competing interests exist.

参考文献
[1] Baihly JD, Altman RM, Malpani R, Malpani R & Luo Fang. Shale gas production decline trend comparison over time and basins[C]//SPE Annual Technical Conference and Exhibition, 19-22 September 2010Florence, Italy. DOI: http://dx.doi.org/10.2118/135555-MS. [本文引用:1]
[2] Cipolla CL, Ceramics C, Lolon EP & Mayerhofer MJ. Reservoir modeling and production evaluation in shale-gas reservoirs[C]//International Petroleum Technology Conference, 7-9 December 2009, Doha, Qatar. DOI: http://dx.doi.org/10.2523/IPTC-13185-MS. [本文引用:1]
[3] Curtis ME, Sondergeld CH, Ambrose RJ & Rai CS. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging[J]. AAPG Bulletin, 2012, 96(4): 665-677. [本文引用:1]
[4] 刘树根, 王世玉, 孙玮, 冉波, 杨迪, 罗超, . 四川盆地及其周缘五峰组—龙马溪组黑色页岩特征[J]. 成都理工大学学报(自然科学版), 2013, 40(6): 621-639.
Liu Shugen, Wang Shiyu, Sun Wei, Ran Bo, Yang Di, Luo Chao, et al. Characteristics of black shale in Wufeng Formation and Longmaxi Formation in Sichuan Basin and its peripheral areas[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2013, 40(6): 621-639. [本文引用:1]
[5] Ghanbari E & Dehghanpour H. Impact of rock fabric on water imbibition and salt diffusion in gas shales[J]. International Journal of Coal Geology, 2015, 138: 55-67. [本文引用:2]
[6] Makhanov K, Dehghanpour H & Kuru E. Measuring liquid uptake of organic shales: A workflow to estimate water loss during shut-in periods[C]//SPE Unconventional Resources Conference Canada, 5-7 November 2013, Calgary, Alberta, Canada. DOI: http://dx.doi.org/10.2118/167157-MS. [本文引用:2]
[7] Makhanov K, Dehghanpour H & Kuru E. An experimental study of spontaneous imbibition in Horn River shales[C]//SPE Canadian Unconventional Resources Conference, 30 October-1 November 2012, Calgary, Alberta, Canada. DOI: http://dx.doi.org/10.2118/162650-MS. [本文引用:1]
[8] Takahashi S & Kovscek AR. Spontaneous countercurrent imbibition and forced displacement characteristics of low-permeability, siliceous shale rocks[J]. Journal of Petroleum Science and Engineering, 2010, 71(1/2): 47-55. [本文引用:1]
[9] Engelder T, Cathles LM & Bryndzia LT. The fate of residual treatment water in gas shale[J]. Journal of Unconventional Oil and Gas Resources, 2014, 7: 33-48. [本文引用:2]
[10] Shanley KW, Cluff RM & Robinson JW. Factors controlling prolific gas production from low-permeability sand stone reservoirs: Implications for resource assessment, prospect development, and risk analysis[J]. AAPG Bulletin, 2004, 88(8): 1083-1121. [本文引用:2]
[11] 游利军, 康毅力. 裂缝性致密砂岩气藏水相毛管自吸调控[J]. 地球科学进展, 2013, 28(1): 79-85.
You Lijun & Kang Yili. Aqueous capillary imbibition behavior management in fractured tight gas reservoirs[J]. Advances in Earth Science, 2013, 28(1): 79-85. [本文引用:2]
[12] Cheng YM. Impact of water dynamics in fractures on the performance of hydraulically fractured wells in gas-shale reservoirs[J]. Journal of Canadian Petroleum Technology, 2012, 51(2): 143-151. [本文引用:2]
[13] Slatt RM & O'Brien NR. Pore types in the Barnett and Woodford gas shales: Contribution to understand ing gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12): 2017-2030. [本文引用:1]
[14] 梁超, 姜在兴, 杨镱婷, 魏小洁. 四川盆地五峰组—龙马溪组页岩岩相及储集空间特征[J]. 石油勘探与开发, 2012, 39(6): 691-698.
Liang Chao, Jiang Zaixing, Yang Yiting & Wei Xiaojie. Characteristics of shale lithofacies and reservoir space of the Wufeng-Longmaxi Formation, Sichuan Basin[J]. Petroleum Exploration and Development, 2012, 39(6): 691-698. [本文引用:1]
[15] Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JH, Pernicone N, et al. Recommendations for the characterization of porous solids[J]. Pure and Applied Chemistry, 1994, 66(8): 1739-1758. [本文引用:1]
[16] 田华, 张水昌, 柳少波, 张洪. 压汞法和气体吸附法研究富有机质页岩孔隙特征[J]. 石油学报, 2012, 33(3): 419-427.
Tian Hua, Zhang Shuichang, Liu Shaobo & Zhang Hong. Determination of organic-rich shale pore features by mercury injection and gas adsorption methods[J]. Acta Petrolei Sinica, 2012, 33(3): 419-427. [本文引用:2]
[17] 陈尚斌, 朱炎铭, 王红岩, 刘洪林, 魏伟, 方俊华. 川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J]. 煤炭学报, 2012, 37(3): 438-444.
Chen Shangbin, Zhu Yanming, Wang Hongyan, Liu Honglin, Wei Wei & Fang Junhua. Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J]. Journal of China Coal Society, 2012, 37(3): 438-444. [本文引用:2]
[18] Nelson PH. Pore-throat sizes in sand stones, tight sand stones, and shales[J]. AAPG Bulletin, 2009, 93(3): 329-340. [本文引用:1]
[19] Alharthy NS, Kobaisi MA, Kazemi H & Graves RM. Physics and modeling of gas flow in shale reservoirs[C]//Abu Dhabi International Petroleum Conference and Exhibition, 11-14 November 2012, Abu Dhabi, UAE. DOI: http://dx.doi.org/10.2118/161893-MS. [本文引用:4]
[20] Bustin AMM, Bustin RM & Cui XJ. Importance of fabric on the production of gas shales[C]//SPE Unconventional Reservoirs Conference, 10-12 February 2008, Keystone, Colorado, USA. DOI: http://dx.doi.org/10.2118/114167-MS. [本文引用:1]
[21] Warpinski NR, Mayerhofer MJ, Vincent MC, Cipolla CL & Lolon EP. Stimulating unconventional reservoirs: Maximizing network growth while optimizing fracture conductivity[J]. Journal of Canadian Petroleum Technology, 2009, 48(10): 39-51. [本文引用:1]
[22] 吴克柳, 李相方, 陈掌星, 李俊键, 胡源, 姜亮亮. 页岩气和致密砂岩气藏微裂缝气体传输特性[J]. 力学学报, 2015, 47(6): 955-964.
Wu Keliu, Li Xiangfang, Chen Zhangxing, Li Junjian, Hu Yuan & Jiang Liangliang. Gas transport behavior through micro fractures of shale and tight gas reservoirs[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 955-964. [本文引用:1]
[23] Javadpour F, Fisher D & Unsworth M. Nanoscale gas flow in shale gas sediments[J]. Journal of Canadian Petroleum Technology, 2007, 46(10): 55-61. [本文引用:1]
[24] 姚军, 孙海, 樊冬艳, 黄朝琴, 孙致学, 张国浩. 页岩气藏运移机制及数值模拟[J]. 中国石油大学学报(自然科学版), 2013, 37(1): 91-98.
Yao Jun, Sun Hai, Fan Dongyan, Huang Chaoqin, Sun Zhixue & Zhang Guohao. Transport mechanisms and numerical simulation of shale gas reservoirs[J]. Journal of China University of Petroleum (Edition of Natural Science), 2013, 37(1): 91-98. [本文引用:1]
[25] 苏玉亮, 盛广龙, 王文东, 闫怡, 张璇. 页岩气藏多重介质耦合流动模型[J]. 天然气工业, 2016, 36(2): 52-59.
Su Yuliang, Sheng Guanglong, Wang Wendong, Yan Yi & Zhang Xuan. A multi-media coupling flow model for shale gas reservoirs[J]. Natural Gas Industry, 2016, 36(2): 52-59. [本文引用:1]
[26] 于荣泽, 张晓伟, 卞亚南, 李阳, 郝明祥. 页岩气藏流动机理与产能影响因素分析[J]. 天然气工业, 2012, 32(9): 10-15.
Yu Rongze, Zhang Xiaowei, Bian Yanan, Li Yang & Hao Mingxiang. Flow mechanism of shale gas reservoirs and influential factors of their productivity[J]. Natural Gas Industry, 2012, 32(9): 10-15. [本文引用:1]
[27] Niu C, Hao YZ, Li DL & Lu DT. Second-order gas-permeability correlation of shale during slip flow[J]. SPE Journal, 2014, 19(5): 786-792. [本文引用:1]
[28] Kang Yili, Chen Mingjun, Li Xiangchen, You Lijun & Yang Bin. Laboratory measurement and interpretation of nonlinear gas flow in shale[J]. International Journal of Modern Physics C, 2015, 26(6): 1-19. [本文引用:1]
[29] 葛洪魁, 申颍浩, 宋岩, 王小琼, 姜呈馥, 史鹏, . 页岩纳米孔隙气体流动的滑脱效应[J]. 天然气工业, 2014, 34(7): 46-54.
Ge Hongkui, Shen Yinghao, Song Yan, Wang Xiaoqiong, Jiang Chengfu, Shi Peng, et al. Slippage effect of shale gas flow in nanoscale pores[J]. Natural Gas Industry, 2014, 34(7): 46-54. [本文引用:1]
[30] 曹成, 李天太, 刘刚, 高潮, 王宇. 考虑吸附、滑脱和自由分子流动效应的页岩基质渗透率计算模型[J]. 西安石油大学学报(自然科学版), 2015, 30(5): 48-53.
Cao Cheng, Li Tiantai, Liu Gang, Gao Chao & Wang Yu. Permeability calculation model of shale matrix with adsorption, slippage and free molecule flow effects[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2015, 30(5): 48-53. [本文引用:1]
[31] 折文旭, 陈军斌, 张杰. 考虑吸附和多流动形式共存的页岩气藏纳米级孔隙基质视渗透率计算方法[J]. 西安石油大学学报(自然科学版), 2015, 30(4): 39-42.
Zhe Wenxu, Chen Junbin & Zhang Jie. Calculation method of apparent permeability of shale gas reservoir with nano-pore in which there are gas adsorption and multiple gas flow patterns[J]. Journal of Xi'an Shiyou University (Natural ScienceEdition), 2015, 30(4): 39-42. [本文引用:1]
[32] 罗小平, 吴飘, 赵建红, 杨宁. 富有机质泥页岩有机质孔隙研究进展[J]. 成都理工大学学报(自然科学版), 2015, 42(1): 50-59.
Luo Xiaoping, Wu Piao, Zhao Jianhong & Yang Ning. Study advances on organic pores in organic matter-rich mud shale[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2015, 42(1): 50-59. [本文引用:1]
[33] 闫建萍, 张同伟, 李艳芳, 吕海刚, 张小龙. 页岩有机质特征对甲烷吸附的影响[J]. 煤炭学报, 2013, 38(5): 805-811.
Yan Jianping, Zhang Tongwei, Li Yanfang, Lü Haigang & Zhang Xiaolong. Effect of the organic matter characteristics on methane adsorption in shale[J]. Journal of China Coal Society, 2013, 38(5): 805-811. [本文引用:1]
[34] 马勇, 钟宁宁, 韩辉, 李大华, 张毅, 程礼军. 糜棱化富有机质页岩孔隙结构特征及其含义[J]. 中国科学: 地球科学, 2014, 44(10): 2202-2209.
Ma Yong, Zhong Ningning, Han Hui, Li Dahua, Zhang Yi & Cheng Lijun. Definition and sturcture characteristics of pores in mylonitized organic-rich shales[J]. Scientia Sinica Terrae, 2014, 44(10): 2202-2209. [本文引用:1]
[35] Zhang Tangwei, Ellis GS, Ruppel SC, Milliken K & Yang Rongsheng. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems[J]. Organic Geochemistry, 2012, 47(6): 120-131. [本文引用:1]
[36] 吴陈君, 张明峰, 马万云, 刘艳, 熊德明, 孙丽娜, . 渝东南牛蹄塘组页岩有机质特征及沉积环境研究[J]. 天然气地球科学, 2014, 25(8): 1267-1274.
Wu Chenjun, Zhang Mingfeng, Ma Wanyun, Liu Yan, Xiong Deming, Sun Lina, et al. Organic matter characteristic and sedimentary environment of the Lower Cambrian Niutitang shale in southeastern Chongqing[J]. Natural Gas Geoscience, 2014, 25(8): 1267-1274. [本文引用:1]
[37] 袁选俊, 林森虎, 刘群, 姚泾利, 王岚, 郭浩, . 湖盆细粒沉积特征与富有机质页岩分布模式——以鄂尔多斯盆地延长组长7油层组为例[J]. 石油勘探与开发, 2015, 42(1): 34-43.
Yuan Xuanjun, Lin Senhu, Liu Qun, Yao Jingli, Wang Lan, Guo Hao, et al. Lacustrine fine-grained sedimentary features and organic-rich shale distribution pattern: A case study of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(1): 34-43. [本文引用:1]
[38] 高劲, 曹喆. 准噶尔盆地下侏罗统页岩气形成条件[J]. 西南石油大学学报(自然科学版), 2016, 38(1): 37-45.
Gao Jin, Cao Zhe. Gas accumulation condition of Lower Jurassic Junggar Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2016, 38(1): 37-45. [本文引用:1]
[39] 蔡进功, 包于进, 杨守业, 王行信, 范代读, 徐金鲤, . 泥质沉积物和泥岩中有机质的赋存形式与富集机制[J]. 中国科学 D辑: 地球科学, 2007, 37(2): 234-243.
Cai Jingong, Bao Yujin, Yang Shouye, Wang Xingxin, Fan Daidu, Xu Jinli, et al. Research on preservation and enrichment mechanisms of organic matter in muddy sediment and mudstone[J]. Scientia Sinica Terrae, 2007, 37(2): 234-243. [本文引用:1]
[40] 关平, 徐昌, 刘文汇. 烃源岩有机质的不同赋存状态及定量估算[J]. 科学通报, 1998, 43(14): 1556-1559.
Guan Ping, Xu Chang & Liu Wenhui. Different occurrences of organic matter in source rocks and their quantitative estimate[J]. Chinese Science Bulletin, 1998, 43(14): 1556-1559. [本文引用:1]
[41] 苗建宇, 祝总祺, 刘文荣, 卢焕勇. 泥质岩有机质的赋存状态及其对泥质岩封盖能力的影响[J]. 沉积学报, 1999, 17(3): 478-481.
Miao Jianyu, Zhu Zongqi, Liu Wenrong & Lu Huanyong. Occurrence of organic matter and its effect on sealing ability of argillaceous rock[J]. Acta Sedimentologica Sinica, 1999, 17(3): 478-481. [本文引用:1]
[42] 张慧, 焦淑静, 庞起发, 李宁, 林伯伟. 中国南方早古生代页岩有机质的扫描电镜研究[J]. 石油与天然气地质, 2015, 36(4): 675-680.
Zhang Hui, Jiao Shujing, Pang Qifa, Li Ning & Lin Bowei. SEM observation of organic matters in the Eopaleozoic shale in South China[J]. Oil & Gas Geology, 2015, 36(4): 675-680. [本文引用:1]
[43] Loucks RG, Reed RM, Ruppel SC & Jarvie DM. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861. [本文引用:1]
[44] 刘春莲, 董艺辛, 车平, Fürsich FT, 石贵勇, 陈亮, 等. 三水盆地古近系土布心组黑色页岩中黄铁矿的形成及其控制因素[J]. 沉积学报, 2006, 24(1): 75-80.
Liu Chunlian, Dong Yixin, Che Ping, Fürsich FT, Shi Guiyong, Chen Liang, et al. Pyrite formation and its controls in black shales of the Buxin Formation (Lower Eocene) from the Sanshui Basin, Guangdong[J]. Acta Sedimentologica Sinica, 2006, 24(1): 75-80. [本文引用:1]
[45] Raiswell R & Berner RA. Pyrite formation in euxinic and semi-euxinic sediments[J]. American Journal of Science, 1985, 285(8): 710-724. [本文引用:1]
[46] 徐祖新, 韩淑敏, 王启超. 中扬子地区陡山沱组页岩储层中黄铁矿特征及其油气意义[J]. 岩性油气藏, 2015, 27(2): 31-37.
Xu Zuxin, Han Shumin & Wang Qichao. Characteristics of pyrite and its hydrocarbon significance of shale reservoir of Doushantuo Formation in middle Yangtze area[J]. Lithologic Reservoirs, 2015, 27(2): 31-37. [本文引用:1]
[47] 严德天, 陈代钊, 王清晨, 汪建国. 扬子地区奥陶系—志留系界线附近地球化学研究[J]. 中国科学 D辑: 地球科学, 2009, 39(3): 285-299.
Yan Detian, Chen Daizhao, Wang Qingchen & Wang Jianguo. Geochemical study of Yangtze Ordovician-Silurian boundary[J]. Scientia Sinica Terrae, 2009, 39(3): 285-299. [本文引用:1]
[48] 王淑芳, 董大忠, 王玉满, 黄金亮, 蒲泊伶. 四川盆地南部志留系龙马溪组富有机质页岩沉积环境的元素地球化学判别指标[J]. 海相油气地质, 2014, 19(3): 27-34.
Wang Shufang, Dong Dazhong, Wang Yuman, Huang Jinliang & Pu Boling. Geochemistry evaluation index of redox-sensitive elements for depositional environments of Silurian Longmaxi organic-rich shale in the south of Sichuan Basin[J]. Marine Origin Petroleum Geology, 2014, 19(3): 27-34. [本文引用:1]
[49] Anderson JU. An improved pretreatment for mineralogical analysis of samples containing organic matter[J]. Clays and Clay Minerals, 1963, 10(1): 380-388. [本文引用:1]
[50] 解宏图, 付时丰, 张旭东, 王晶. 土壤有机质稳定性特征与影响因子研究综述[J]. 土壤通报, 2003, 34(5): 459-462.
Xie Hongtu, Fu Shifeng, Zhang Xudong & Wang Jing. Review on characterization of SOM stabilization and affecting factors[J]. Chinese Journal of Soil Science, 2003, 34(5): 459-462. [本文引用:1]
[51] 杨益. 重庆市典型土壤中有机质的赋存特征及其化学稳定性研究[D]. 重庆: 西南大学, 2011
Yang Yi. The research of existing characteristics and chemical stability of typical soil organic matter in Chongqing[D]. Chongqing: Southwest University, 2011. [本文引用:1]
[52] 张梦妍, 包承宇, 陈静文, 吴敏. 化学氧化剂(H2O2、NaOCl)作用下高岭土—胡敏酸复合体中有机碳的稳定性[J]. 环境化学, 2014, 33(7): 1149-1154.
Zhang Mengyan, Bao Chengyu, Chen Jingwen & Wu Min. The stabilization of organic carbon in humic acid-kaolin complex by chemical oxidants[J]. Environmental Chemistry, 2014, 33(7): 1149-1154. [本文引用:1]
[53] Kuila U, McCarty DK, Derkowski A, Fischer TB, Topór T & Prasad M. Nano-scale texture and porosity of organic matter and clay minerals in organic-rich mudrocks[J]. Fuel, 2014, 135: 359-373. [本文引用:3]
[54] Dimitrijević M, Antonijević MM & Dimitrijević V. Investigation of the kinetics of pyrite oxidation by hydrogen peroxide in hydrochloric acid solutions[J]. Minerals engineering, 1999, 12(2): 165-174. [本文引用:1]
[55] 巫锡勇, 廖昕, 赵思远, 凌斯祥, 朱宝龙. 黑色页岩水岩化学作用实验研究[J]. 地球学报, 2015, 35(5): 573-581.
Wu Xiyong, Liao Xin, Zhao Siyuan, Ling Sixiang & Zhu Baolong. Experimental study of the water-rock chemical reaction in black shale[J]. Acta Geoscientica Sinica, 2015, 35(5): 573-581. [本文引用:1]
[56] 刘洪林, 王红岩. 中国南方海相页岩超低含水饱和度特征及超压核心区选择指标[J]. 天然气工业, 2013, 33(7): 140-144.
Liu Honglin & Wang Hongyan. Ultra-low water saturation characteristics and the identification of over-pressured play fairways of marine shales in South China[J]. Natural Gas Industry, 2013, 33(7): 140-144. [本文引用:1]
[57] 方朝合, 黄志龙, 王巧智, 郑德温, 刘洪林. 富含气页岩储层超低含水饱和度成因及意义[J]. 天然气地球科学, 2014, 25(3): 471-476.
Fang Chaohe, Huang Zhilong, Wang Qiaozhi, Zheng Dewen & Liu Honglin. Cause and significance of the ultra-low water saturation in gas-enriched shale reservoir[J]. Natural Gas Geoscience, 2014, 25(3): 471-476. [本文引用:1]
[58] King GE. Hydraulic fracturing 101: What every representative, environmentalist, regulator, reporter, investor, university researcher, neighbor and engineer should know about estimating frac risk and improving frac performance in unconventional gas and oil wells[C]//SPE Hydraulic Fracturing Technology Conference, 6-8 February 2012, The Woodland s, Texas, USA. DOI: http://dx.doi.org/10.2118/152596-MS. [本文引用:1]
[59] Civan F. Analyses of processes, mechanisms, and preventive measures of shale-gas reservoir fluid, completion, and formation damage[C]//SPE International Symposium and Exhibition on Formation Damage Control, 26-28 February 2014, Lafayette, Louisiana, USA. DOI: http://dx.doi.org/10.2118/168164-MS. [本文引用:1]
[60] Almulhim A, Alharthy N, Tutuncu AN & Kazemi H. Impact of imbibition mechanism on flowback behavior: A numerical study[C]//Abu Dhabi International Petroleum Exhibition and Conference, 10-13 November 2014, Abu Dhabi, UAE. DOI: http://dx.doi.org/10.2118/171799-MS. [本文引用:1]
[61] Vidic RD, Brantley SL, Vand enbossche JM, Yoxtheimer D & Abad JD. Impact of shale gas development on regional water quality[J]. Science, 2013, 340(6134): 1235009. [本文引用:2]
[62] Holditch SA. Factors affecting water blocking and gas flow from hydraulically fractured gas wells[J]. JPT, 1979, 31(12): 1515-1524. [本文引用:1]
[63] 康毅力, 陈强, 游利军, 王巧智, 杨斌, 俞杨烽. 页岩气藏水相圈闭损害实验研究及控制对策——以四川盆地东部龙马溪组露头页岩为例[J]. 油气地质与采收率, 2014, 21(6): 87-91.
Kang Yili, Chen Qiang, You Lijun, Wang Qiaozhi, Yang Bin & Yu Yangfeng. Laboratory investigation of water phase trapping damage in shale gas reservoir—A case of Longmaxi shale in the eastern Sichuan Basin[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(6): 87-91. [本文引用:1]
[64] 刘乃震, 柳明, 张士诚. 页岩气井压后返排规律[J]. 天然气工业, 2015, 35(3): 50-54.
Liu Naizhen, Liu Ming & Zhang Shicheng. Flowback patterns of fractured shale gas wells[J]. Natural Gas Industry, 2015, 35(3): 50-54. [本文引用:1]
[65] 高树生, 胡志明, 郭为, 左罗, 沈瑞. 页岩储层吸水特征与返排能力[J]. 天然气工业, 2013, 33(12): 71-76.
Gao Shusheng, Hu Zhiming, Guo Wei, Zuo Luo & Shen Rui. Water absorption characteristics of gas shale and the fracturing fluid flowback capacity[J]. Natural Gas Industry, 2013, 33(12): 71-76. [本文引用:1]
[66] 张磊, 康钦军, 姚军, 高莹, 孙海. 页岩压裂中压裂液返排率低的孔隙尺度模拟与解释[J]. 科学通报, 2014, 59(32): 3197-3203.
Zhang Lei, Kang Qinjun, Yao Jun, Gao Ying & Sun Hai. The explanation of low recovery of fracturing fluid in shale hydraulic fracturing by pore-scale simulation[J]. Chinese Science Bulletin, 2014, 59(32): 3197-3203. [本文引用:1]
[67] 任凯, 葛洪魁, 杨柳, 吴珊, 申颍浩. 页岩自吸实验及其在返排分析中的应用[J]. 科学技术与工程, 2015, 15(30): 106-109.
Ren Kai, Ge Hongkui, Yang Liu, Wu Shan & Shen Yinghao. Imbibition experiment of shale and its application in flowback analysis[J]. Science Technology and Engineering, 2015, 15(30): 106-109. [本文引用:1]
[68] Ruppert LF, Sakurovs R, Blach TP, He Lilin, Melnichenko YB, Mildner DFR, et al. A USANS/SANS study of the accessibility of pores in the Barnett shale to methane and water[J]. Energy & Fuels, 2013, 27(2): 772-779. [本文引用:1]
[69] Kuila U, McCarty DK, Derkowski A, Fischer TB & Prasad M. Total porosity measurement in gas shales by the water immersion porosimetry (WIP) method[J]. Fuel, 2014, 117: 1115-1129. [本文引用:1]
[70] You Lijun, Chen Qiang, Kang Yili, Yu Yangfeng & He Jingan. Evaluation of formation damage using microstructure fractal in shale reservoirs[J]. Fractals: Complex Geometry, Patterns, and Scaling in Nature & Society, 2015, 23(1): 1540008. [本文引用:1]
[71] 刘向君, 熊健, 梁利喜. 龙马溪组硬脆性页岩水化实验研究[J]. 西南石油大学学报(自然科学版), 2016, 38(3): 178-186.
Liu Xiangjun, Xiong Jian & Liang Lixi. Hydration experiment of hard brittle shale of the Longmaxi Formation[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2016, 38(3): 178-186. [本文引用:1]
[72] You Lijun, Kang Yili, Chen Zhangxin, Chen Qiang & Yang Bin, Wellbore instability in shale gas wells drilled by oil-based fluids[J]. International Journal of Rock Mechanics & Mining Sciences, 2014, 72: 294-299. [本文引用:1]
[73] 翟光明, 何文渊, 王世洪. 中国页岩气实现产业化发展需重视的几个问题[J]. 天然气工业, 2012, 32(2): 1-4.
Zhai Guangming, He Wenyuan & Wang Shihong. A few issues to be highlighted in the industrialization of shale gas in China[J]. Natural Gas Industry, 2012, 32(2): 1-4. [本文引用:1]
[74] 赵金洲, 王松, 李勇明. 页岩气藏压裂改造难点与技术关键[J]. 天然气工业, 2012, 32(4): 46-49.
Zhao Jinzhou, Wang Song & Li Yongming. Difficulties and key techniques in the fracturing treatment of shale gas reservoirs[J]. Natural Gas Industry, 2012, 32(4): 46-49. [本文引用:1]
[75] 袁俊亮, 邓金根, 张定宇, 李大华, 闫伟, 陈朝刚, . 页岩气储层可压裂性评价技术[J]. 石油学报, 2013, 34(3): 523-527.
Yuan Junliang, Deng Jingen, Zhang Dingyu, Li Dahua, Yan Wei, Chen Chaogang, et al. Fracability evaluation of shale-gas reservoirs[J]. Acta Petrolei Sinica, 2013, 34(3): 523-527. [本文引用:1]
[76] 吴奇, 胥云, 王晓泉, 王腾飞, 张守良. 非常规油气藏体积改造技术——内涵、优化设计与实现[J]. 石油勘探与开发, 2012, 39(3): 352-358.
Wu Qi, Xu Yun, Wang Xiaoquan, Wang Tengfei & Zhang Shouliang. Volume fracturing technology of unconventional reservoirs: Connotation, design optimization and implementation[J]. Petroleum Exploration and Development, 2012, 39(3): 352-358. [本文引用:2]
[77] 游利军, 王飞, 康毅力, 方朝合, 陈强. 页岩气藏水相损害评价与尺度性[J]. 天然气地球科学, 2016, 27(11): 2023-2029.
You Lijun, Wang Fei, Kang Yili, Fang Chaohe & Chen Qiang. Evaluation and scale effect of aqueous phase damage in shale gas reservoir[J]. Natural Gas Geoscience, 2016, 27(11): 2023-2029. [本文引用:1]
[78] Chen Qiang, Kang Yili, You Lijun, Yang Pengfei, Zhang Xiaoyi & Cheng Qiuyang. Change in composition and pore structure of Longmaxi black shale during oxidative dissolution[J]. International Journal of Coal Geology, 2017, 172: 95-111. [本文引用:1]
[79] Blauch ME, Myers, RR, Moore TR, Lipinski BA & Houston NA. Marcellus shale post-frac flowback waters-where is all the salt coming from and what are the implications?[C]//SPE Eastern Regional Meeting, 23-25 September 2009, Charleston, West Virginia, USA. DOI: http://dx.doi.org/10.2118/125740-MS. [本文引用:1]